Structure of N≥126 nuclei produced in fragmentation of 238U

N. Al-Dahan¹, Zs. Podolyák¹, P.H. Regan¹, S.J. Steer¹, W. Gelletly¹, P.M. Walker¹, G. Farrelly¹, N. Alkhomashi¹, T. Swan¹, M. Górsk¹², J. Gerl², H.J. Wollersheim², S.B. Pietri², J. Benlliure³ and the Stopped RISING collaboration

¹Department of Physics, University of Surrey, Guildford GU2 7XH, UK
²GSI, Plankstrasse 1, D-64291 Darmstadt, Germany
³University of Santiago de Compostella, Santiago de Compostella, Spain

The nuclear structure of neutron-rich N≥126 nuclei have been investigated following their production via relativistic projectile fragmentation of a E/A=1 GeV 238U beam on Be target. The cocktail of secondary beam products was separated and identified using the GSI FRagment Separator (FRS). The nuclei of interest were implanted in a high-granularity active stopper detector set-up consisting of 6 double sided silicon strip detectors. The position of the implanted ion was correlated with its subsequent β-decay (detected in the same or neighbouring pixel) and both implants and beta-decay events were measured. The associated gamma-ray transitions were detected with the RISING array, consisting of 15 Euroball cluster Ge-detectors. Time-correlated gamma decays from individually identified nuclear species have been recorded, allowing the clean identification of both β and isomeric decays.

The study focused on the beta-decay of 205Pt and nuclei around it. The initial results of these investigations will be compared with previous studies in nearby N=126 nuclei.