Applications of in-medium chiral dynamics to nuclear structure

P. Finelli
University of Bologna
Department of Physics and INFN
Via Irnerio 46, 40126 Bologna, Italy
e-mail: paolo.finelli@bo.infn.it

ABSTRACT

A relativistic nuclear energy density functional is developed, guided by two important features that establish connections with chiral dynamics and the symmetry breaking pattern of low-energy QCD: a) strong scalar and vector fields related to in-medium changes of QCD vacuum condensates; b) the long-and intermediate-range interactions generated by one-and two-pion exchange, derived from in-medium chiral perturbation theory, with explicit inclusion of $\Delta(1232)$ excitations. Applications are presented for the description of ground-state properties and collective excitations of medium and heavy nuclei. The extension to hypernuclei will also be presented, showing a new interpretation of the Λ-nucleus potential.

Work supported by MURST and INFN.

REFERENCES