Lifetime measurements for neutron-rich nuclei around 48Ca populated in grazing reaction.

D.Mengoni1 and J.J.Valiente Dobón2

1Dipartimento di Fisica and INFN Sezione di Padova, Padova, I-35131 Italy
2INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy.

Nowadays it has become clear that the magic numbers are not immutable and they can change as a function of the isospin, due to the influence of the residual interaction between valence orbitals [1]. Such a structural change in neutron-rich nuclei is verified in the appearance of the N = 32 subshell closure in nuclei located just above the doubly-magic 48Ca and this can be inferred by different experimental hints [2]. The B(E2) reduced transition probability, which can be derived from lifetime measurements, is complementary to the energy information and is expected to be small and comparable with single-particle estimates going towards shell closures. For the calcium isotopic chain, the spectroscopic information is nevertheless limited to the energies of the excited states, especially in the neutron-rich part, and almost no lifetime information is available.

Based on this an experiment has been performed at Laboratori Nazionali di Legnaro, using the CLARA-PRISMA set-up [3, 4] in combination with the RDDS method [5]. The nuclei around 48Ca have been populated via Multi Nucleon Transfer (MNT) reaction and their lifetimes determined. The B(E2) extracted for the $2^+ \rightarrow 0^+$ and $11/2^- \rightarrow 7/2^-$ transitions in 50Ca and 51Sc respectively have been compared with large-scale shell-model calculations. The fp effective charge have been extracted from 50Ca and 51Sc because of their ideal position, two-neutrons and two-neutrons one-proton with respect to 48Ca nucleus, in this region.

The experimental method, the results and their interpretation will be presented and discussed.

This work has been partially supported by the European Commission within the sixth Framework Programme through I3-EURONS (contract n. RII3-CT-2004-506065).