The Oslo nuclear group has developed a method to extract primary γ-ray spectra [1] at various excitation energies. From the set of primary γ-ray spectra nuclear level densities and γ-ray strength functions can be extracted [2] simultaneously. So far the method has been successfully tested on rare earth and mid shell nuclei. The application of the method to closed shell $^{205-208}$Pb and near closed shell 45Ti will be presented.

The experiments are performed on 206,208Pb and 46Ti targets using 3He ions and 1H beam at Oslo Cyclotron Lab (OCL). The inelastic scattering and transfer reactions were used to observe the particle-γ coincidences. The total γ-ray spectra are unfolded using the unfolding technique described in Ref. [3], and first generation γ-rays are extracted [1] from the unfolded γ-ray spectra. The next step of Oslo method is to factorize the primary γ-ray spectra into level density and γ-ray strength function according to the generalized Fermi’s golden rule:

$$P(E,E'_\gamma) \propto T(E_\gamma) \rho(E_f).$$

Where, $P(E,E'_\gamma)$ is the primary γ-ray matrix, $T(E_\gamma)$ is the transmission co-efficient and $\rho(E_f)$ is the level density of final states.

The experiments and analysis method will be discussed briefly. The preliminary results for $^{205-208}$Pb and 45Ti nuclei will also be shown.
Fig. 1): Left panel: The Experimental nuclear level densities of 205,206Pb using the Oslo method. The filled squares are the data points compared with the known discrete levels. Right panel: The normalized γ-ray strength function of 205,206Pb.

References: